MarrNet: 3D Shape Reconstruction via 2.5D Sketches
نویسندگان
چکیده
3D object reconstruction from a single image is a highly under-determined problem, requiring strong prior knowledge of plausible 3D shapes. This introduces challenges for learning-based approaches, as 3D object annotations are scarce in real images. Previous work chose to train on synthetic data with ground truth 3D information, but suffered from domain adaptation when tested on real data. In this work, we propose MarrNet, an end-to-end trainable model that sequentially estimates 2.5D sketches and 3D object shape. Our disentangled, two-step formulation has three advantages. First, compared to full 3D shape, 2.5D sketches are much easier to be recovered from a 2D image; models that recover 2.5D sketches are also more likely to transfer from synthetic to real data. Second, for 3D reconstruction from 2.5D sketches, systems can learn purely from synthetic data. This is because we can easily render realistic 2.5D sketches without modeling object appearance variations in real images, including lighting, texture, etc. This further relieves the domain adaptation problem. Third, we derive differentiable projective functions from 3D shape to 2.5D sketches; the framework is therefore end-to-end trainable on real images, requiring no human annotations. Our model achieves state-of-the-art performance on 3D shape reconstruction.
منابع مشابه
3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks
We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the s...
متن کامل3D ShapeNets: A Deep Representation for Volumetric Shape Modeling
3D shape is a crucial but heavily underutilized cue in today’s computer vision system, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape model in the loop. Apart from object recognition on 2.5D depth maps, recovering these incompl...
متن کاملImproved Adversarial Systems for 3D Object Generation and Reconstruction
This paper describes a new approach for training generative adversarial networks (GAN) to understand the detailed 3D shape of objects. While GANs have been used in this domain previously, they are notoriously hard to train, especially for the complex joint data distribution over 3D objects of many categories and orientations. Our method extends previous work by employing the Wasserstein distanc...
متن کاملFast 2.5D model reconstruction of assembled parts with high occlusion for completeness inspection
In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstru...
متن کاملPiecewise-planar Reconstruction of Multi-room Interiors with Arbitrary Wall Arrangements
Reconstructing the as-built architectural shape of building interiors has emerged in recent years as an important and challenging research problem. An effective approach must be able to faithfully capture the architectural structures and separate permanent components from clutter (e.g. furniture), while at the same time dealing with defects in the input data. For many applications, higher-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017